

Asymmetry of Jet k_T in Longitudinal Polarized p+p Collisions in PHENIX at RHIC

R. Hobbs
For the PHENIX collaboration
University of New Mexico

Outline

- Measuring transverse momentum of partons in the proton
- Looking for a correlation of this measurement with spin direction
- Initial measurements in Run03
- Status of Run05
- Summary

PH ENIX $k_{\rm T}$, $j_{\rm T}$ from azimuthal correl.

PHIENIX

Origin of $k_{\rm T}$

$$\frac{1}{2} \langle p_T^2 \rangle_{pair} ? \langle k_T^2 \rangle \qquad ?$$

An example - J/? production.

 p_{T} ?_{J/?} =1.8?0.23?0.16 GeV/c Phys. Rev. Lett. 92, 051802, (2004).

Hard Scattering $k_{\rm T}$

transverse

- acoplanar in P_I ? P_T space
- collinear in P_X ? P_Y space

transverse

- acoplanar in P_I ? P_T space
- acoplanar in P_X ? P_Y space

k_T from Orbital Motion

One can consider the possibility that spin-correlated transverse momentum (orbital angular momentum) may contribute to jet k_T .

e.g., Meng Ta-chung et al., *Phys. Rev. D 40 (1989)*

unlike-sign helicities

Azimuthal correlation function

$$C_{ij}(?\,\emph{?})\,?\,\textit{norm}\,? \frac{dN^{real}_{ij}}{d?\,\emph{?}_{ij}}\,/\,\frac{dN^{mixed}_{ij}}{d?\,\emph{?}_{ij}}$$

?° - h? correlation functions

Not corrected for acceptance

Corrected for acceptance

Jet kinematics

$$p^2_{\text{out}}? = p^2_{\text{Ta}} \sin^2 ? ? ? ?$$

$$p_{\text{out}}^2 = p_{\text{Ta}}^2 \sin^2 ? ? ? 2? k_{\text{Ty}}^2 ? 2? k_{\text{Ty}}^2 ? 2? k_{\text{Ty}}^2 ? 2? k_{\text{Ty}}^2 ? 2 k_{\text{h}}^2 x_{\text{h}}^2 x$$

$$x_{
m h} = p_{
m Ta}/p_{
m Tt}$$

$$\sqrt{\langle j_T^2 \rangle} ? \sqrt{2} \frac{p_{Tt} p_{Ta}}{\sqrt{p_{Tt}^2 ? p_{Ta}^2}} ?_N$$

$$\begin{array}{c|c}
p_{\text{Tt}} & j_{\text{T}} \\
\hline
p_{\text{Ta}} & j_{\text{T}} & \hat{q}
\end{array}$$

$$\hat{x}_h^{?1}\langle z_t\rangle\sqrt{\langle k_T^2\rangle}$$
 ? $x_h^{?1}\sqrt{\langle p_{out}^2\rangle?\langle j_{Ty}^2\rangle(1?x_h^2)}$

partonic
$$\hat{x}_h$$
 ? $\frac{\left\langle \hat{p}_{Ta} \right\rangle}{\left\langle \hat{p}_{Tt} \right\rangle}$

hadronic
$$x_h$$
 ? $\frac{p_{Ta}}{p_{Tt}}$

Spin Sorted Analysis

 Do exactly the same analysis sorted on same and opposite helicity bunch crossings, extract <zkt>_{RMS} and look at the difference.

Oct. 27, 2005

9

Run03 Data

Like sign

Unlike sign

trigger p^0 1< p_{Tt} <3 Gev/c 3< p_{Tt} <7 Gev/c

Associated $h^?$ 1< p_{Ta} <2.5 GeV/c

Systematic Check

- Helicity assignments are randomized, and then the k_T difference calculated for each randomized set.
- The width of the distribution for all the randomized sets should be the same as our statistical errors on the previous plot.

Run03 Data

Its too early to make a definite statement about the apparent excess as the systematic uncertainties are being evaluated.

However, there is an ongoing analysis of 10x more stat. and 2x better polarization in run $05 \approx$ should yield a definite answer.

- We have an analysis tool that allows us to measure k_{T} initial state transverse momentum of partons.
- We are studying this effect in longitudinal spin-sorted collisions to see if there is a spin-dependent coherent component of $k_{\rm T}$.
- Is there a connection to parton OAM?
 Theoretical guidance needed!

Outlook

- Run05 has ~x10 statistics, so that the uncertainty reduced by factor 2-3.
- It has ~x2 in polarization, so the effect grows by ~x4.